Birzeit University
Faculty of Science-Department of Physics
Quantum Mechanics II, Phys4332
Spring 2021
Homework 3:

1. Let \vec{s}_{1} and \vec{s}_{2} be the spin operators of two spin 1/2-particles. Then $\vec{S}=\vec{s}_{1}+\vec{s}_{2}$ is the spin operator for this two-particle system.
(a) Consider the Hamiltonian $H_{0}=\frac{1}{\hbar^{2}}\left(S_{x}^{2}+S_{y}^{2}-S_{z}^{2}\right)$. Determine the eigenvalues and eigenvectors of this Hamiltonian.
(b) Consider the perturbation $H_{1}=s_{1 x}-s_{2 x}$. Calculate the eigenvalues of $H_{0}+\lambda H_{1}$ in first-order perturbation theory.
2. Suppose that a hydrogen atom is exposed to a uniform electric field, $\vec{\varepsilon}$, and a parallel, uniform magnetic field, \vec{B}, both pointing in z-direction Consider the first excited energy level, corresponding to $\mathrm{n}=2$, neglect the spin .
(a) Show that in general the level is split into four nondegenerate energy levels.
(b) For what values of ε and B are there instead only three levels, and what are the degeneracies of these levels?
(c) For what values of ε and B are there only two levels, and what are the degeneracies of these levels?
(d) Re do the previous parts if the electric field and magnetic field where in 3 dimensions. Show that you can get the results of the three previous parts if the an appropriate choice of E and B .
3. A beam of excited hydrogen atoms in the 2 s state passes between the plates of a capacitor in which a uniform electric field E exists over a distance L . The hydrogen atoms have velocity v along the x -axis and the E field is directed along the z -axis, as shown. All the $\mathrm{n}=2$ states of hydrogen are degenerate in the absence of the E field, but certain of them mix when the field is present.
(a) Which of the $\mathrm{n}=2$ states are connected in first order via the perturbation?
(b) Find the linear combination of $\mathrm{n}=2$ states which removes the degeneracy as much as possible.
(c) For a system which starts out in the 2 s state at $\mathrm{t}=0$, express the wave function at time $\mathrm{t} \leq \frac{L}{v}$.
(d) Find the probability that the emergent beam contains hydrogen in the various $\mathrm{n}=2$ states.
4. Consider an isotropic two-dimensional harmonic oscillator with mass m and frequency ω_{0} i.e., a particle with Hamiltonian

$$
\begin{array}{r}
H_{o s c}=\frac{1}{2 m}\left(P_{x}^{2}+P_{y}^{2}\right)+\frac{1}{2} m \omega_{0}^{2}\left(X^{2}+Y^{2}\right)-\hbar \omega_{0} \\
a_{x}=\sqrt{\frac{m \omega}{2 \hbar}}\left(X+i \frac{P_{X}}{m \omega}\right)
\end{array}
$$

Similarly, one can define the annihilation operator for the y-coordinate. Creation operator is the hermitian conjugate of the annihilation operator.

1. Define $a_{ \pm}=\frac{1}{\sqrt{2}}\left(a_{x} \mp i a_{y}\right)$

Write L_{z} and the Hamiltonian in terms of $a_{ \pm}$and $a_{ \pm}^{\dagger}$. Make a conclusion about the basis of both operators. Deduce a relation between the basis of the 2-D Harmonic oscillator and the basis of the orbital angular momentum.
5. A three dimensional harmonic oscillator hamiltonian can be written in the following way:

$$
\hat{H}=\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{1}{2} m\left(\omega_{x}^{2} X^{2}+\omega_{y}^{2} Y^{2}+\omega_{z}^{2} Z^{2}\right)
$$

The Hamiltonian is in cartesian coordinates, its basis is characterized by 3 quantum numbers $\mid n_{x} n_{y} n_{z}>$ if $\omega_{x}=\omega_{y}=\omega_{z}$, then it will become an isotropic oscillator and can be solved in spherical coordinates, and its basis can be written as $\left|N l j m_{j}\right\rangle$, where $N=n_{x}+n_{y}+n_{z}, L=N, N-2, N-4, \ldots, 0$ or 1
a spin- $1 / 2$ particle is placed in this 3D-oscillator.Now lets do the following:
(a) If the particle is subjected to a perturbation $H_{1}=\mu \vec{\sigma} \cdot \vec{r}$, where σ_{x}, σ_{y}, and σ_{z} are the Pauli spin matrices. Find the expectation value of $x \sigma_{x}$ in first order perturbation theory for the ground state.
(b) If $\omega_{x}=\omega_{y}=\omega_{0}\left(1+\frac{1}{3} \epsilon\right)$ and $\omega_{z}=\omega_{0}\left(1-\frac{2}{3} \epsilon\right)$. Find the energy and wave-function correction up to first order for the first excited state. Comment on the linear combination obtained for the wave-function correction. Do not use cartesian representation
(c) If $\omega_{x}=\omega_{0}\left(1-\frac{2}{3} \epsilon \cos \left(\gamma+120^{\circ}\right)\right), \omega_{y}=\omega_{0}\left(1-\frac{2}{3} \epsilon \cos \left(\gamma-120^{\circ}\right)\right)$ and $\omega_{z}=\omega_{0}\left(1-\frac{2}{3} \epsilon \cos (\gamma)\right)$. Find the energy and wave-function correction up to first order for the first excited state. Comment on the linear combination obtained for the wave-function correction. Do not use cartesian representation

